Molecular and colloidal dynamics in acid mine waters

^aDurães N, ^bBobos I, ^{a,c}Ferreira da Silva E

Acid mine waters collected from the Lousal, Aljustrel and S. Domingos mine areas (Iberian Pyrite Belt) were studied by infrared spectroscopy and chemical analysed by ICP-MS.

The pH of these waters range from 1.5 to 4 and the electrical conductivity range from 1470 to 40840 μS.cm⁻¹. Chemistry of acid mine water corresponds to the Fe-Mg-SO₄-(Al) type, which well explains why Fe and Mg sulfates precipitate during evaporation. The amounts of sulfate and metals are considerably variable but far exceed the background values in several times: SO_4 (30 – 7500), Fe (11 – 159000), Al (170 – 43700), Cu (15 – 322000), Zn (30 – 101000), and Pb (1 – 2400). Zinc are the most mobile of the three metals considered and remains in waters in high amounts, instead of Pb²⁺ which is only stable in extreme acid pH values (pH<1.5). The ratio between the concentration (values in ppm) sediments:waters show a sequence Pb>Cu>Zn. The average concentrations in waters shows a sequence Zn>Cu>Pb, while in sediment are Zn>Pb>Cu.

Speciation calculus indicates the predominance of

 ${\rm Cu^{2+}}$, ${\rm Zn^{2+}}$ and ${\rm Pb^{2+}}$ species in solution. The ${\rm SO_4}$ concentration increases significantly at pH<2 and sulfate species become more important.

Attenuated total reflectance infrared spectroscopy (FTIR-ATR) allowed identifying in aqueous solution the S-O and Fe-O-OH (goethite) complexes. The divalent metals form complexes with Fe-O-OH and SO_{4} -Me. Two structural coordination forms were identified: monodentate (pH<2) and bidentate (pH<4) coordination. These complexes allow the precipitation of schwertmannite, goethite or simple sulfates during evaporation. The Fe-O-OH and SO_4^{2-} complexes form simple and complex sulfates, where both Cu^{2+} and Zn^{2+} from acid waters are sequester in their structure. Under high acidic conditions (pH \sim 1.5) jarosite is crystallized and the Pb is fixed in its structure, fact that is reinforced by the correlation of Pb with K.

^a GEOBIOTEC - Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (nunomsduraes@gmail.com)

^b Departamento de Geociências, Ambiente e Ordenamento do Território and Centro de Geologia da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto

^c Departamento de Geociências, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro