Heavy metals from marine sediments and bioaccumulation in sea cucumbers

Dr. Eddie N. Laboy
Associate Professor
Universidad del Turabo

International Workshop and Hemispheric Conference on Medical Geology Nov. 17, 2005

Why my interest in heavy elements?

- * The Pepipo War ...
- * Aphrodiciacs ...
- Zn and gametogenesis
- Sediments as sinkholes
- Possible bioaccumulation

m m u

Holothuria mexicana

Isostichopus badionotus

Valores Biométricos: LC = Largo Contraido (cm); PH = Peso Húmedo (g); PS = Peso Seco (g); B = Biomasa (g)

	Media (s)Alcance	Media (s)Alcance	F
LC n=100	23.4(4.64)12.2-35.6	13.6(4.26)4.1-21.3	240.35**
PH n=100	561(212.3)163-1205	205(62.3)79-355	260.37**
PS n=30	56.7(28.7)16.1-145.3	9.8(4.3)1.7-17.1	78.267**
B n=30	11.2(2.97)5.64-19.09	4.4(1.87)1.14-8.16	106.27**

Methods

- •38 shallow (depth < 4.0 m) stations were randomly established, of which 28 where inhabited by holothurians
- •Sampling of upper fraction of sediments with PVC-stoppered cylinders, collection in sealed bags, further homogenization, drying and chemical treatment for acid digestion
- •Hand-capture of specimens and classification in two size categories as for Cutress (1996)
- •Immediate evisceration: occurred after submerging specimens in very warm (~ 36 °C) water
- •Digestive tracks were collected in sterile plastic bags and frozen
- •In the lab, visceral samples were cleaned with deionized water and HCl (10%) to remove sediments and mucous layers
- Drying and further grinding of visceral tissue
- •Chemical digestion with perchloric acid (Moore et al., 1993)
- •Analysis with Varian Flame AA-20 Spectrophotometer

- * There was no significant difference in the trace elements concentration in sediments inhabited by holothurians
- * Large specimens of both species exhibited significantly higher metal concentrations than smaller individuals, except for Zinc in small individuals of *I. badionotus*
- * The mean concentration for all metals was higher in *I. badionotus*, but it was not significant (Sign Test : P = 0.031)
- * The enrichment ratio (the metal concentration in tissues relative to the metal loads in sediments) for Cu, Ni, Pb, & Zn was significant in large individuals from both species.
- * Although Fe is plentiful in sediments, non of the species ingest it.

What do these data suggest?

Are sea cucumber exhiting selective feeding?

Do these graphs suggest bioaccumulation?

Can you link cultural and scientific knowledge?

Conclusions

- 1. Large individuals of both species have a potential to be biomonitors, due to their ability to accumulate Cu, Ni, Pb & Zn.
- 2. The difference in biocumulation level could be a consequence of interspecific dissimilarities, given the fact that there are differences in the amount of sediments ingested
- 3. The bioccumulation of trace elements suggests a potential hazard on public health. Smaller size specimens (the preferred by consumers) are not guarantee of lack of metals.
- 4. The high concentration of trace elements in the sediments of Morrocoy indicates an above standard input of such metals, thus the park is polluted.
- 5. More studies are needed to determine desintoxication mechanisms and size-related bioaccumulation differences.

The findings from this coincidental research were published in 2001 in the internationally recognized journal Hydrobiologia

Cited as Laboy-Nieves, E. N. & J. E. Conde.

Heavy metals in eviscerated tissues of two shallow water deposit feeding holothurians.

Volume 459 (1-3), Pages 19-26

Thanks for your attention

