



#### TOXIC METALS IN PEDIATRICS

Florabel G. Mullick, M.D., Sc.D., SES

Principal Deputy Director, Armed Forces Institute of Pathology

Director, Center for Environmental Pathology & Toxicology

Armed Forces Institute of Pathology

Washington, DC - USA



## TOXIC METALS IN PEDIATRICS ALL METALS CAN BE TOXIC

- Sufficient quantities
- ◆ Low concentrations
  - lead, mercury, iron manganese, cadmium, arsenic, nickel, berylium



## TOXIC METALS IN PEDIATRICS SPECIAL FACTORS

- When compared to adults, the pediatric population is more susceptible or has increased risk for metal toxicity
- Can be either symptomatic or asymptomatic
- Normality or life threatening illness



## TOXIC METALS IN PEDIATRICS SPECIAL FACTORS (Cont)

- Increased surface area in proportion to body weight
- Proximity to ground-metal dust
- Hand to mouth activity
- Different metabolism some detoxification, pathways not fully developed
- ◆ Long term effects start younger
- ◆ Lack of knowledge pediatric laborers



## TOXIC METALS IN PEDIATRICS FACTORS AFFECTING METABOLISM



- Dietary deficiencies enhance intestinal absorption
- The blood-brain barrier is incompletely developed
- Placenta limited barrier function
- ◆ Site of entry Target organ i.e. Iron GI-liver
- Highest concentration not in target organ i.e. Bone lead -Hematopathology - CNS
- ◆ Genetic factors may increase susceptibility i.e. Lead G6PD, Thalassemia, sickle cell trait



- Genotype- environmental interaction
- ◆Stage of development
- Threshold effects
- Properties of agent
- ◆Dose-response curve
- Manifestations of teratogenesis



## GENOTYPE ENVIRONMENT INTERACTION

• The genetic differences among species and individual subjects within a species account for variability of effects



#### ◆STAGE OF DEVELOPMENT

 Organogenesis from day 18 thru 60 of human gestation is the period of greatest sensitivity to teratogenic insults



## ◆THRESHOLD EFFECTS of MECHANISMS

• Dosage or level of exposure below which the incidence of death, malformation etc is not statistically greater than that of a control population



#### **◆**DOSE RESPONSE CURVE

• Correlates the magnitude of the effects to the dose of drugs or chemicals the embryo was exposed to



#### PROPERTIES OF AGENT

• Determine its access and effects on fetus



#### MANIFESTATIONS OF TERATOGENESIS

 Deaths, malformation, growth retardation or functional deficit



## TOXIC METALS IN PEDIATRICS

## **TERATOGENS**















## TOXIC METALS IN PEDIATRICS TERATOGENICITY

- ◆Industrialized western countries
- ◆2-3% of births show morphologic abnormalities
- Underlying cause only know in 30-35% cases



# TOXIC METALS IN PEDIATRICS MECHANISMS OF TERATOGENSIS SUSPECTED

- **♦**Mutation
- Chromosomal aberrations
- Mitotic Interference
- Others



# TOXIC METALS IN PEDIATRICS TERATOGENESIS - ETIOLOGY

- **♦**Genetic
- Environmental
  - Drugs and Chemicals
- Unknown (polygenic)



## TOXIC METALS IN PEDIATRICS TERATOGENIC DRUGS

- Alcohol
- Aminopterin
- Androgens
- Antiacids
- Aspirin
- **♦** Barbiturates
- **♦**Estrogen



# TOXIC METALS IN PEDIATRICS DRUGS CONSUMED IN PREGNANCY

- Alcohol
- Analgesics
- Antacids
- Antiemetics
- Antihistamines



## TOXIC METALS IN PEDIATRICS QUESTIONS

- ◆Can the agent produce the malformations?
- ◆Likelihood in a particular patient?



# TOXIC METALS IN PEDIATRICS QUESTIONS (Cont)

#### ◆TO ANSWER WE NEED:

- Methodology
- Epidemiologic studies
- Clinical studies
- Basic science knowledge





## COPPER

- Disordered biliary excretion Cu accumulates
- ◆Menke's syndrome or Wilson's disease



#### MENKE'S CLINICAL FINDINGS

- Described in 1962, Copper role in 1972
- ♦ Symptoms as in Cu deficiency
  - Neuropathy (Central degeneration, developmental delay)
  - Vessel abnormalities
  - Steely hair, hypopigmentation
  - Bony changes, Osteoporosis, fractures
- ◆Survival: 3 months to 3 years







## TOXIC METALS IN PEDIATRICS

## **Mercury Exposure in Pediatrics**



# TOXIC METALS IN PEDIATRICS MERCURY

- Can pass through placenta
- Deliveries usually uneventful
- Can pass through breast milk
- Affects developing nervous system
- Affects proximal renal tubules



## MERCURY-AUTOPSY

- Atrophic brains
- Decreased neurons
- Architectural disrupture
- Exencephaly
- Encephalocele
- Hydrocephalus





# TOXIC METALS IN PEDIATRICS METHYLMERCURY

- Fetal Infants Intrauterine exposure
- Post natal Children Post natal exposure
- Adults



# TOXIC METALS IN PEDIATRICS METHYLMERCURY

#### Transplacental Effects:

- Embryotoxic acting before the third month of pregnancy
- Fetotoxic acting in or after the third month of pregnancy



# TOXIC METALS IN PEDIATRICS METHYLMERCURY

- Minamata, Japan-polluted bay-fish
- Iraq-contaminated bread
- Canadian Cree indian infants
- New Zealand



### TOXIC METALS IN PEDIATRICS MINAMATA

- Lethargy
- Uncoordinated suching
- Convulsions
- Cerebral palsy



◆ A 5 y/o Japanese girl developed signs of acute methyl mercury poisoning after eating contaminated fish. She died at age 23 years after suffering what was described as the "apallic syndrome"













## TOXIC METALS IN PEDIATRICS LEAD METABOLISM

- Absorbed through gastrointestinal tract
- Bloodstream 95% bound to erythrocytes
- Plasma and extracellular fluid contain 1-5%
- Transfer to bone from blood
- Excreted mainly in urine



## TOXIC METALS IN PEDIATRICS LEAD EFFECTS

- Adverse effects at blood concentration of 0.10ppm (10ug/100dl)
- ◆ Asymptomatic to life threatening
- Drowsiness, irritability and vomiting
- Brain and kidney damage
- Colic
- Anemia microcytic, hypochronic
- Electrocardiographic abnormalities



### TOXIC METALS IN PEDIATRICS LEAD ENCEPHALOPATHY

- Blood lead concentrations of 80-100ug/dl
- Higher cognitive functions affected
- Irritability
- Motor impairment
- Dullness
- Convulsions
- Coma



## TOXIC METALS IN PEDIATRICS LEAD-FETUS

- Crosses placenta
- Fetal uptake begins at week 12 until birth
- Decreased growth
- Neurobehavioral deficits
- Reductions in gestational age
- Preterm labor
- Abortion



## TOXIC METALS IN PEDIATRICS LEAD-FETUS

- ◆ Concentration in pregnant women and children should not exceed 20ug/100ml of blood
- ◆ Decreased growth and neurobehavioral deficits with levels as low as 10-15ug/100ml



### LEAD NEPHROPATHY

- Aminoaciduria
- Hypophosphatemia
- Glucosuria











◆ A 17 month old girl was admitted to the hospital because of convulsions that were localized to the right side. She became comatose and died. Toxic granulations were noted in the neutrophils. A diagnosis of lead poisoning due to pica was made.



### LEAD POISONING

◆ Intranuclear inclusions in renal tubular epithelium





# TOXIC METALS IN PEDIATRICS LEAD MONITORING

- ◆ Inhibits Fe incorporation into porphyrin ring
- ZP and EP rise (zinc protoporphyrin and erythocyte porphyrin)
- Blood Lead quant



#### TOXIC METALS IN PEDIATRICS

#### IRON POISONING IN PEDIATRICS



### ACCIDENTAL IRON OVERDOSE: US REGULATIONS

- ◆ 1987: Child resistant packaging for most drugs and food supplements with more than 250 mg of iron per container.
- ◆ 1997: FDA issues additional packaging regulations in response to 3 citizen petitions submitted to FDA by American Association of Poison Control Centers, the attorneys general of 34 states and the Nonprescription Drug Manufactures Association.



### IRON LETHAL INGESTIONS

- ◆ Lethal amounts of elemental iron range from 220 mg/kg to 900 mg/kg.
- Death may result from 220 mg.
- Mitochondrial injury may be underlying mechanism.



### PATHOLOGY OF IRON POISONING

- ◆ Mucosal erosions in gastrointestinal tract associated with hemorrhage. (Predominantly gastric and small intestinal mucosa)
- Metabolic acidosis
- Periportal (zone 1) hepatic necrosis
- Gastric scarring









#### **ALUMINUM ACCUMULATION**

- Chronic renal failure/dialysis
- ◆ Immature or impaired kidneys



#### **ALUMINUM ACCUMULATION**

- Neurologic syndrome
- Osteomalacic osteodystrophy



#### ARSENIC-2 TO 4 WEEKS

- HAIR
- NAILS
- SKIN
- BY 4 WEEKS IN BONE
- CAN CROSS PLACENTA



◆ A 52 year old Caucasian man with a 20 year history of having had many skin cancers caused by arsenic. History of treatment with inorganic arsenic as a child. History of treatment with Fowler's solution for several years starting at age 36.











